Reciprocity for multirestricted Stirling numbers
نویسندگان
چکیده
Multirestricted Stirling numbers of the second kind count the number of partitions of a given set into a given number of parts, each part being restricted to at most a fixed number of elements. Multirestricted numbers of the first kind are then defined as elements of the matrix inverse to the matrix of corresponding multirestricted numbers of the second kind. The anomalous sign behavior of these latter numbers makes them impervious to combinatorial analysis. In answer to a conjecture that has remained open for several years, we derive a reciprocity law for multirestricted Stirling numbers using algebraic techniques based on polynomial recursions. As corollaries, we obtain new recurrence relations for multirestricted numbers, and a new algebraic derivation of the reciprocity law for Stirling numbers. © 2005 Elsevier Inc. All rights reserved.
منابع مشابه
Inversions Relating Stirling, Tanh, Lah Numbers and an Application to Mathematical Statistics
Abstract. Inversion formulas have been found, converting between Stirling, tanh and Lah numbers. Tanh and Lah polynomials, analogous to the Stirling polynomials, have been defined and their basic properties established. New identities for Stirling and tangent numbers and polynomials have been derived from the general inverse relations. In the second part of the paper, it has been shown that if ...
متن کاملA Generalization of Stirling Numbers
are called a weighted Stirling pair if f(g(x)) = g(f(x)) = x, i.e.,/and g are reciprocal. When W(x) = l, B^in.k) and B2(n,k) reduce to a Stirling type pair whose properties are exhibited in [7]. In this paper, we shall present a weighted Stirling pair that includes some previous generalizations of Stirling numbers as particular cases. Some related combinatorial and arithmetic properties are als...
متن کاملStirling Numbers and Generalized Zagreb Indices
We show how generalized Zagreb indices $M_1^k(G)$ can be computed by using a simple graph polynomial and Stirling numbers of the second kind. In that way we explain and clarify the meaning of a triangle of numbers used to establish the same result in an earlier reference.
متن کاملModified degenerate Carlitz's $q$-bernoulli polynomials and numbers with weight ($alpha ,beta $)
The main goal of the present paper is to construct some families of the Carlitz's $q$-Bernoulli polynomials and numbers. We firstly introduce the modified Carlitz's $q$-Bernoulli polynomials and numbers with weight ($_{p}$. We then define the modified degenerate Carlitz's $q$-Bernoulli polynomials and numbers with weight ($alpha ,beta $) and obtain some recurrence relations and other identities...
متن کاملSome Combinatorial Series and Reciprocal Relations Involving Multifold Convolutions
The present paper considers a kind of combinatorial series and its allied reciprocal relations which are determined by discrete multi-fold convolutions. Furthermore, their various formal and analytic expressions in explicit forms are obtained. Constructive applications to some well-known sequences such as the Bell numbers, the Fibonacci numbers, the Stirling numbers and some others given by int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Comb. Theory, Ser. A
دوره 113 شماره
صفحات -
تاریخ انتشار 2006